The China Study: Nutritional effects are the same for all cancers

Closed Thread
Thread Tools
  #1  
Old 04-13-2015, 04:19 PM
Villages PL Villages PL is offline
Sage
Join Date: Sep 2011
Location: Belvedere
Posts: 5,279
Thanks: 0
Thanked 0 Times in 0 Posts
Default The China Study: Nutritional effects are the same for all cancers

There's no link for this information. Anyone who's interested can find it in chapter 8 of the following book: "The China Study" by T. Colin Campbell, Ph.D.

In chapter 8 he talks specifically about 3 forms of cancer (breast, prostate, and large bowel) but he makes it clear from the beginning that the effects of nutrition are the same for all forms of cancer.

I believe it was misstated in the last thread that only certain cancers are related to diet.

And this fits in with what Dr. Longo said (see previous thread for the link) that those with the highest protein intake have the highest risk of cancer and mortality.
  #2  
Old 04-13-2015, 04:49 PM
CFrance's Avatar
CFrance CFrance is offline
Sage
Join Date: Dec 2011
Location: Tamarind Grove/Monpazier, France
Posts: 14,668
Thanks: 389
Thanked 2,098 Times in 860 Posts
Default

I thought what was stated in a previous thread was that genetics trump nutrition where cancer is concerned. The China Study book is over ten years old.
__________________
It's harder to hate close up.
  #3  
Old 04-13-2015, 05:15 PM
Barefoot's Avatar
Barefoot Barefoot is offline
Sage
Join Date: Jul 2007
Location: Winters in TV, Summers in Canada.
Posts: 17,657
Thanks: 1,692
Thanked 244 Times in 185 Posts
Default

Quote:
Originally Posted by CFrance View Post
I thought what was stated in a previous thread was that genetics trump nutrition where cancer is concerned. The China Study book is over ten years old.
VPL, have you read Denise Minger's comments about The China Study?

From an article:
"The China Study involved 367 variables and 8000 correlations. I said I would leave it to others to comment on the study design and the statistical analysis, and now someone has done just that. Denise Minger devoted a month and a half to examining the raw data to see how closely Campbell’s claims aligned with the data he drew from; she found many weaknesses and errors."
__________________
Barefoot At Last
No act of kindness, no matter how small, is ever wasted.
Saving one dog will not change the world, but surely for that one dog, the world will change forever.

Last edited by Barefoot; 04-13-2015 at 06:09 PM.
  #4  
Old 04-13-2015, 06:14 PM
graciegirl's Avatar
graciegirl graciegirl is offline
Sage
Join Date: Mar 2008
Posts: 40,169
Thanks: 5,009
Thanked 5,779 Times in 2,003 Posts
Send a message via AIM to graciegirl
Default

I view this as more user friendly than the extreme diet espoused by the China Study.

Food Pyramids and Plates: What Should You Really Eat? | The Nutrition Source | Harvard T.H. Chan School of Public Health
__________________
It is better to laugh than to cry.

Last edited by graciegirl; 04-14-2015 at 02:28 AM.
  #5  
Old 04-13-2015, 06:38 PM
hulahips hulahips is offline
Gold member
Join Date: Apr 2012
Location: sunset pointe
Posts: 1,143
Thanks: 0
Thanked 3 Times in 3 Posts
Default

Good book but old. Read it yrs ago
  #6  
Old 04-13-2015, 06:40 PM
dbussone's Avatar
dbussone dbussone is offline
Sage
Join Date: Jun 2012
Posts: 7,833
Thanks: 0
Thanked 88 Times in 80 Posts
Default The China Study: Nutritional effects are the same for all cancers

Quote:
Originally Posted by hulahips View Post
Good book but old. Read it yes ago

And statistically inaccurate.

One of many articles: http://drlwilson.com/Articles/CHINA%...K%20REVIEW.htm
__________________
All the great things are simple, and many can be expressed in a single word: freedom, justice, honor, duty, mercy, hope.
Winston Churchill
  #7  
Old 04-13-2015, 06:53 PM
dbussone's Avatar
dbussone dbussone is offline
Sage
Join Date: Jun 2012
Posts: 7,833
Thanks: 0
Thanked 88 Times in 80 Posts
Default

Here's another:

http://anthonycolpo.com/the-china-st...egan-nonsense/

"More Vegan Nonsense".
__________________
All the great things are simple, and many can be expressed in a single word: freedom, justice, honor, duty, mercy, hope.
Winston Churchill
  #8  
Old 04-13-2015, 06:57 PM
dbussone's Avatar
dbussone dbussone is offline
Sage
Join Date: Jun 2012
Posts: 7,833
Thanks: 0
Thanked 88 Times in 80 Posts
Default The China Study: Nutritional effects are the same for all cancers

And here's another:
http://www.cholesterol-and-health.com/China-Study.html

Who would like more?
__________________
All the great things are simple, and many can be expressed in a single word: freedom, justice, honor, duty, mercy, hope.
Winston Churchill
  #9  
Old 04-13-2015, 07:03 PM
lanemb lanemb is offline
Member
Join Date: Dec 2014
Location: Lake Deaton
Posts: 39
Thanks: 0
Thanked 0 Times in 0 Posts
Default

First let me preface this by saying I am a heart patient who at 49 had a heart attack 12 years ago. I am only slightly over weight and had cholesterol levels just below 200.

There is a lot of good information in the book on nutrition and it is fact based. It is also one of the largest studies ever done. Reading it definitely changed my diet habits and provided measurable results. That said it doesn't work for everyone.

The single biggest change I made was eliminating red meat since white meat has 1/3 the fat of red. I also almost never eat processed sandwich meat of any kind. This alone dropped my cholesterol by 75 points. I had tried exercise and other diets and nothing else helped. I have continued this regiment for about 5 years with the cholesterol levels remaining low.

My doctor believes what I am doing has worked for me. I give this book to the heart patients in my life. My own son did not heed the advice and two weeks ago at 43 with a family history, bad diet and being a smoker had a heart attack at 43. Fortunately for him he was staying with me and my wife and I recognized the symptoms early and called 911. Maybe now he will focus on what I have learned worked for me.

I am always open to hear what has really worked for other heart patients. My brother-in-law is a retired doctor and has also made some of the changes based on the book. My doctor says I am lucky. Many of his patients did not find out how to improve their health and cholesterol levels as I did and they are no longer with us.

If you haven't walked in these shoes you are probably not as impacted by reading the book.
  #10  
Old 04-13-2015, 07:13 PM
dbussone's Avatar
dbussone dbussone is offline
Sage
Join Date: Jun 2012
Posts: 7,833
Thanks: 0
Thanked 88 Times in 80 Posts
Default

Quote:
Originally Posted by lanemb View Post
First let me preface this by saying I am a heart patient who at 49 had a heart attack 12 years ago. I am only slightly over weight and had cholesterol levels just below 200.

There is a lot of good information in the book on nutrition and it is fact based. It is also one of the largest studies ever done. Reading it definitely changed my diet habits and provided measurable results. That said it doesn't work for everyone.

The single biggest change I made was eliminating red meat since white meat has 1/3 the fat of red. I also almost never eat processed sandwich meat of any kind. This alone dropped my cholesterol by 75 points. I had tried exercise and other diets and nothing else helped. I have continued this regiment for about 5 years with the cholesterol levels remaining low.

My doctor believes what I am doing has worked for me. I give this book to the heart patients in my life. My own son did not heed the advice and two weeks ago at 43 with a family history, bad diet and being a smoker had a heart attack at 43. Fortunately for him he was staying with me and my wife and I recognized the symptoms early and called 911. Maybe now he will focus on what I have learned worked for me.

I am always open to hear what has really worked for other heart patients. My brother-in-law is a retired doctor and has also made some of the changes based on the book. My doctor says I am lucky. Many of his patients did not find out how to improve their health and cholesterol levels as I did and they are no longer with us.

If you haven't walked in these shoes you are probably not as impacted by reading the book.

I have not read the book. I tend to read the scientific studies themselves rather than the articles about them.

As I have said many times, I believe in moderation in all things dietary. If you study the meta-data, they support a moderate physiological approach.
__________________
All the great things are simple, and many can be expressed in a single word: freedom, justice, honor, duty, mercy, hope.
Winston Churchill
  #11  
Old 04-13-2015, 11:27 PM
jimbo2012's Avatar
jimbo2012 jimbo2012 is offline
Sage
Join Date: Mar 2012
Location: LI, NY >Fernandina South
Posts: 7,255
Thanks: 93
Thanked 176 Times in 101 Posts
Default

Quote:
Originally Posted by Barefoot View Post
VPL, have you read Denise Minger's comments about The China Study?
Have you read Dr Campbell's response?

One thing we were struck by early on was the fact that Minger apparently removes comments on her blog from scientific researchers who point out the flaws in her reasoning and in her understanding of accepted research methods. In his report below Dr. Campbell notes an example of one researcher whose critical post was removed.

A cancer epidemiologist who says she posted criticism of Minger's methods last week on Minger's blog complained in a posting on VegSource that her critical post first appeared and then was removed from the Comments area of Minger's blog. In fact, Minger herself posted on VegSource in response to this epidemeologist's complaint, and did not deny that the epidemeologist's critical comments had been yanked. After complaining on VegSource about the post disappearing, the epidemiologist's post apparently reappeared on Minger's blog. (Minger subsquently said something about a "spam filter" being at fault.)
As the exchange showed, it was clear to the epidemologist that Minger was out of her depth, and she offered to give Minger some some assistance and teach Minger some proper methods of analysis. In response Minger expressed excitement at hoping to attract professional researchers to help examine Dr. Campbell's data in the future, and see if they can aid Minger in proving Dr. Campbell is wrong in some way. Minger wrote that if she could enlist actual researchers who could help her poke holes in China Study data, "this could be a really great opportunity to grab the attention of the medical community."
About the only community interested in the kind of thing Minger is attempting would be the pro-beef Weston Price Foundation and the meat industry. Minger may find helpers coming forward from those ranks and offering their assistance; many have already tried unsuccessfully for years to attack and undercut the message of Dr. Campbell's life work. On their own website, the Weston Price people express how thrilled they are that Minger has joined in their attempts to discredit Dr. Campbell's work. (In fact, Minger is a fan of the Weston Price Foundation and recommends their work to others. You can read an expose about the Price Foundation at the end of Dr. Campbell's article -- which includes the revelation that Price himself, the founder, actually recommended a vegetarian diet to his family as the most healthy.)
Of course, Minger expresses no interest in publicizing any of her work when it shows Campbell is correct.
We see this often; someone trying to build some credibility on their own by taking aim at the biggest target they can find in hope that they can punch a hole, thus showing themselves to be smart enough to take down the big guy. Unqualified to actually do any kind of study of her own, Minger hopes to find flaws in the peer-reviewed work of researchers from Oxford University, Cornell University, and the Chinese Academy of Preventive Medicine.
Except she's not up to the task of taking on professional researchers who have to work to the most rigorous standards in academia. These are slightly higher than standards for kids blogging on the web.

A critic's post pointing out some of Minger's errors disappears from her blog, and reappears when the critic starts complaining about it elsewhere on the web. Minger then publicly admits that she could use help understanding Dr. Campbell's research, because she doesn't have professional expertise to analyze and interpret the data she's pontificating about.
23-year-old Minger lists her educational and professional qualifications on her Facebook page as writer, Catholic school teacher, summer camp instructor, and "Professional Sock Puppeteer."
So we were mildly surprised that Dr. Campbell felt he needed to take the time to dignify Minger's musings with a response. Still, this is the internet, and I guess sometimes it doesn't hurt to respond, even if the attacks constitute no more than a mosquito bite.
So just in case there are individuals who might feel there was merit to any of Minger's scientific-sounding speculation, here is Dr. Campbell's response:
  #12  
Old 04-13-2015, 11:30 PM
jimbo2012's Avatar
jimbo2012 jimbo2012 is offline
Sage
Join Date: Mar 2012
Location: LI, NY >Fernandina South
Posts: 7,255
Thanks: 93
Thanked 176 Times in 101 Posts
Default

It is both interesting and gratifying that there has been such a huge response, both on her blog and on those of others. This is a welcome development because it gives this topic an airing that has long been hidden in the halls and annals of science. It is time that this discussion begin to reach a much larger audience, including both supporters and skeptics.
I hope at some point to be able to read all of the discussions and the questions that have been raised, but present deadlines and long-standing commitments have forced me, for now, to focus on the most common concerns and questions, in order to respond in a timely manner here.
the-china-study2.jpgKudos to Ms. Minger for having the interest, and taking the time, to do considerable analysis, and for describing her findings in readily accessible language. And kudos to her for being clear and admitting, right up front, that she is neither a statistician nor an epidemiologist, but an English major with a love for writing and an interest in nutrition. We need more people with this kind of interest.
I am the first to admit that background and academic credentials are certainly not everything, and many interesting discoveries and contributions have been made by "outsiders" or newcomers in various fields. On the other hand, background, time in the field, and especially peer review, all do give one a kind of perspective and insight that is, in my experience, not attainable in any other way. I will try to make clear in my comments below when this is particularly relevant.
My response can be divided into three parts, mostly addressing her argument's lack of proportionality--what's important and what's not.

Misunderstanding our book's objectives and my research findings
Excessive reliance on the use of unadjusted correlations in the China database
Failure to note the broader implications of choosing the right dietary lifestyle
Before proceeding further, however, I would like to make a general comment about my approach in responding to Denise. I believe Denise is a very intelligent person, and I can see how she might reach the conclusions she did; this is easy to do for someone without extensive scientific research experience. Having said this, there are fundamental flaws in her reasoning, and it is these flaws that I will address in this paper. Some might wonder, "Why didn't he go through her laundry list of claims and address each one in the same order?" The answer is simple: these claims are derived from the same faulty reasoning, so it is this underlying problem that I will address. I do in fact illustrate this point by addressing one of her claims regarding wheat, and the reader can assume that one could go through a similar exercise with all her claims.

A. Not understanding the book's objectives.
The findings described in the book are not solely based on the China survey data, even if this survey was the most comprehensive (not the largest) human study of its kind. As explained in the book, I draw my conclusions from several kinds of findings and it is the consistency among these various findings that matter most.
First and foremost, our extensive work on the biochemical fundamentals of the casein effect on experimental cancer in laboratory animals (only partly described in our book) was prominent because these findings led to my suggestion of fundamental principles and concepts that apply to the broader effects of nutrition on cancer development. These principles were so compelling that they should apply to different species, many nutrients, many cancers and an almost unlimited list of health and disease responses (e.g., nutritional control of gene expression, multi-mechanistic causation, reversal of cancer promotion but not reversal of initiation, rapidity of nutritional response, etc.). These principles also collectively and substantially inferred major health benefits of whole plant-based foods.
This earlier laboratory work, extensively published in the very best peer-reviewed journals, preceded the survey in China. These findings established the essence of what can be called biological plausibility, one of the most important pillars establishing the reliability of epidemiological research. [Biological plausibility represents established evidence showing how a cause-effect relationship works at the biological level, one of the principles of epidemiology research established by the epidemiology pioneer, Sir Bradford Hill.]
Unfortunately, this issue of biological plausibility too often escapes the attention of statisticians and epidemiologists, who are more familiar with 'number crunching' than with biological phenomena. The first 15-20 years of our work was not, as some have speculated, an investigation specifically focused on the carcinogenic effects of casein. It was primarily a series of studies intended to understand the basic biology of cancer and the role of nutrition in this disease. The protein effect, of course, was remarkable, and for this reason, it was a very useful tool to give us a novel insight into the workings of the cancer process. [Nonetheless, the casein effect, which was studied in great depth and, if judged by the formal criteria for experimentally determining which chemicals classify as carcinogens, places casein in the category of being the most relevant carcinogen ever identified.]
Second, this survey in rural China, based on a very unique population and experimental format (from several perspectives), resulted in the collection of an exceptionally comprehensive database that, to a considerable extent, permitted the testing of hypotheses and principles learned in the laboratory, both mine and others. By 'testing', I mean questioning whether any evidence existed in the China database to support a protective effect characterized by the nutritional composition of a plant-based diet. I was not sure what might be found but nonetheless became impressed with what was eventually shown.
The China project data afforded an opportunity to consider the collective interplay and effects of many potentially causative factors with many disease outcomes--the very definition of nutrition (my definition of nutrition is not about the isolated effects of individuals nutrients, or even foods for that matter). The China project encouraged us not to rely on independent statistical correlations with little or no consideration of biological plausibility. In the book, I drew my conclusions from six prior models of investigation to illustrate this approach: breast cancer, liver cancer, colon cancer (minimally), energy utilization/body weight control, affluent disease-poverty disease and protein vs. body growth rates. Using this strategy, I first inquired whether a collection of variables in the China survey (ranging from univariate correlations to more sophisticated analyses) could consistently and internally support each of these biologically plausible models and, second, I determined whether the findings for each of these models were consistent with the overarching hypothesis that a whole food, plant-based diet promotes health--I could not discuss much of this rationale in a page-limited book intended for the public.
Most importantly, I cannot emphasize enough that the findings from the China project, standing alone, do not solely determine my final views expressed in the book. That's why only one chapter of 18 was devoted to the China survey project, which is only one link in a chain of experimental approaches. I was simply asking the question whether there were biologically plausible data in the China database to support the findings gained in our laboratory, among others. Because of the uniqueness of the China database, I believed that the evidence was highly supportive. One of the unique characteristics of this survey was the traditional dietary practices of this cohort of people. Mostly, they were already consuming a diet largely comprised of plant-based foods, thus limiting our ability to detect an hypothesized plant-based food effect--thus making our final observations that much more impressive.
Third, in the book, we summarized findings from other research groups for a variety of diseases to determine the consistency of our model with their findings, according to my principles and concepts. One of the most compelling parts of this exercise was the fact that so many of their findings, although published in good peer-reviewed journals, had been and were continuing to be ignored and/or distorted, a very disturbing and puzzling phenomenon. This posed for me the question, why? My participation in extensive reviews of the work of others during my 20-year stint working on or as a member of expert committees gave me a particularly rich opportunity to consider these previously published studies. There still is, and for a long time has been, an intentional effort at various levels of science hierarchy to denigrate studies that speak to the more fundamental biology of plant-based diets. The fact that there has been resistance, oftentimes hostile and personal in the lay community, speaks volumes to me.
Fourth, and most importantly, there is the enormously impressive findings of my physician colleagues, which came to my attention near the end of the China project data collection period and which were showing remarkable health benefits of plant-based nutrition, involving not only disease prevention but also disease treatment (alphabetically: Diehl, Esselstyn, Goldhamer, Klaper, McDougall, Ornish, Shintani-and many others since the book's publication: T. Barnard, N. Barnard, Corso, Fuhrman, Lederman, Montgomery, Popper, Pulde, Schulz, Shewman). I cannot overemphasize the remarkable accomplishments of these primary care physicians. In effect, their work affirmed my earlier laboratory research. I should add that I knew none of them or their work during my career in the laboratory, thus was not motivated or biased to find ways to affirm their work.
It was the combination of these various lines of inquiry that made so compelling the larger story told in the book, at least for me. Denise mostly ignores these fundamental but highly consistent parts of my story. In that vein, I strongly believe that the findings of no single study in biology or even a group of similar studies should be taken too seriously until context is established. Biology is not for engineers and number crunchers, as important as they may be, because, compared to their systems, biological response is much more complex and dynamic.
  #13  
Old 04-13-2015, 11:35 PM
jimbo2012's Avatar
jimbo2012 jimbo2012 is offline
Sage
Join Date: Mar 2012
Location: LI, NY >Fernandina South
Posts: 7,255
Thanks: 93
Thanked 176 Times in 101 Posts
Default

B. The use of 'raw' univariate correlations.

In a study like this survey in China (ecologic, cross-sectional), univariate correlations represent one-to-one associations of two variables, one perhaps causal, the other perhaps effect. Use of these correlations (about 100,000 in this database) should only be done with caution, that is, being careful not to infer one-to-one causal associations. Even though this project provided impressive and highly unique experimental features, using univariate correlations to identify specific food vs. specific disease associations is not one of these redeeming features, for several reasons. First, a variable may reflect the effects of other factors that change along with the variable under study. Therefore, this requires adjustment for confounding factors--mostly, this was not done by Denise. Second, for a variable to have information of value (as in making a correlation), it must exhibit a sufficient range. If, for example, a variable is measured in 65 counties (as in China), there must be a distribution of values over a sufficiently broad range for it to be useful. Third, the variables should represent exposures representative of prior years when the diseases in question are developing. I see little or no indication that Denise systematically considered each of these requirements.
I should point out that when we were deciding to publish these data in the original monograph, we decided to do something highly unusual in science--to publish the uninterpreted raw correlations, hoping that future researchers would know how to use or not use them. We felt that this highly unusual decision was necessary because we were wary of those in the West who might have doubted the validity of data collected in China--we had several experiences to suspect this. But also, we believe that research should be as transparent as possible, simply for the sake of transparency, thus minimizing suspicion of hidden agendas. We knew that taking this approach was a risk because there could be those who, knowing little or nothing about experimentation of this type, might wish to use the data for their own questionable purposes. Nonetheless, we decided to be generous and, in order advise future users of these data, we added our words of caution--written about 1988--as part of our 894-page monograph. I also have repeated this caution in other publications of mine. It seems that Denise missed reading this material in the monograph.
As I was writing this, I discovered this comment from a self-described professional epidemiologist (PhD, cancer epidemiology) on one of the blogs (A Cancer Epidemiologist refutes Denise Mingers China Study Claims due to incorrect data analysis - 30 Bananas a Day!)--a comment that is relevant to the point that I am now addressing in this response.
I do not know this person but did find her comment interesting. After reviewing Denise's critique, she wrote the following for her (Denise's) blog, only then to see it quickly and mysteriously disappear.
"Your analysis is completely OVER-SIMPLIFIED. Every good epidemiologist/statistician will tell you that a correlation does NOT equal an association. By running a series of correlations, you've merely pointed out linear, non-directional, and unadjusted relationships between two factors. I suggest you pick up a basic biostatistics book, download a free copy of "R" (an open-source statistical software program), and learn how to analyze data properly. I'm a PhD cancer epidemiologist, and would be happy to help you do this properly. While I'm impressed by your crude, and - at best - preliminary analyses, it is quite irresponsible of you to draw conclusions based on these results alone. At the very least, you need to model the data using regression analyses so that you can account for multiple factors at one time."
This blogger is making the same point that I am making but I am puzzled why was it deleted from Denise's blog?
Lest it be forgotten, the main value of the China data set is its descriptive nature, thus providing a baseline against which other data sets can be broadly compared, either over time or over geographic space. I must emphasize: the correlations published in our monograph CANNOT be blindly used to infer causality--at least for specific cause-effect associations having no biological plausibility. Nonetheless, they do offer a rich trove of opportunities to generate interesting hypotheses, relatively few of which have been explored to date. In contrast, using models representing biological plausibility, which was determined from prior research, I simply wanted to see if they were consistent with the China survey data.

For the sake of understanding the downside risk of using univariate correlations, I'll use this imaginary conversation involving a few correlations that Denise thought were relevant to her personal allergy to wheat, although many other examples from Denise's treatise could serve the same purpose.
Denise makes a point concerning a highly significant (but unadjusted) univariate correlation between wheat flour consumption and two cardiovascular diseases plus a couple other diseases. In doing so, she infers that wheat flour causes these cardiovascular diseases. She also makes the point that "none of these correlations appear to be tangled with any risk-heightening variables, either." And further, she implies that I ignored this potentially important correlation, perhaps intentionally, because of my alleged bias against meat. I use this particular example here because others who very much dislike my views have pointed out on the Internet that this example cited by Denise represents evidence of my lack of integrity.
The conversation goes like this, after Denise reminds me of these univariate correlations.
"Denise, that correlation of wheat flour and heart disease is interesting but I am not aware of any prior and biologically plausible and convincing evidence to support an hypothesis that wheat causes these diseases, as you infer."
"Did you, by any chance, look for evidence whether there might be other variables confounding the wheat flour correlation, variables that change in parallel with wheat flour consumption? I presume you did because you said that 'none of these correlations appear to be tangled with any risk-heightening variables.'
"But just a minute, I found some, and they're all highly statistically significant (p<0.01 to p<0.001)."
"Higher wheat flour consumption, for example, is correlated, as univariate correlations, with
lower green vegetable consumption (many of these people live in northern, arid regions where they often consume meat based diets with little no consumption of vegetables). [By the way, Tuoli county data, to which you refer as my "sin of omission" intentionally were excluded from virtually all our analyses on meat consumption because this county ranked very high when meat consumption was documented at survey time, but much lower when responding to the questionnaire on frequency of meat consumption. That is, these nomadic people migrate for part of the year to valleys, where they consume more vegetables and fruits.]
lower serum levels of monounsaturated fats (possibly increasing risk of heart disease?)
higher serum levels of urea (a biomarker of protein consumption)
greater body weight (higher risk of heart disease?)"
"Interestingly, you might be interested to know that all of these variables are known from prior knowledge, i.e., biological plausibility, to associate with higher risk for heart disease."
"Denise, this is quite an oversight that could suggest the opposite conclusion from the one that you intended to convey. Or was this bias reflecting your personal preference for eating raw meat and avoiding wheat flour? Any thoughts?"
"Why did you highlight this relationship as a key example of my "sin of omission", being even more 'troubling than the distorted facts in The China Study and the details that (I) leave out?'"
Incidentally, aside from Denise's claiming there were no confounding factors, I might have taken her seriously when she posed a possible effect of wheat flour on heart disease, because it may be possible to gather prior evidence that could be considered as supporting the opposite point of view. In fact, this would be a proper use of univariate correlations, simply searching for those correlations that might hint of supporting evidence for such an hypothesis. If sufficiently convincing, then we could design a more analytical type of study. This exercise is called hypothesis generation, which is one of the virtues of the China data set. But Denise is doing something different, coming very close to almost randomly inferring causality without adjusting for confounding factors, without scanning the variables for analytical authenticity and without--to my knowledge--having prior evidence of biological plausibility for such an hypothesis.
Then, she uses this example as evidence of a "sin of omission" and a "distorted fact" on my part. Using these rather inflammatory words infers serious personal indiscretion on my part. Does she really mean this?
There are different ways of using univariate correlations in a database like this. It is not that these correlations are useless and should be ignored. Rather, it is a question of using them intelligently. By this, I mean first adjusting these correlations for confounding factors (if and when possible) then examining the individual variables of the correlations for authenticity. Depending on the reliability of these correlations, they may be used to guide whether a hypothetical, cause-effect model, perhaps having preliminary evidence of biological plausibility, is on the right track. The most critical expertise needed for their use is knowing the underlying biology, which is so often missing among trained statisticians.
The six models to which I referred in our book are those evaluated in this manner. Yes, when possible, I also used univariate correlations (along with statistical significance) in support of these models but only after we had preliminary supportive data for the model (only brief summarized in the book). Here are a few representative publications of those supportive data for the six models that we explored in our book:

Breast cancer (Marshall JR, Qu Y, Chen J, Parpia B, Campbell TC. Additional ecologic evidence: lipids and breast cancer mortality among women age 55 and over in China. Europ. J. Cancer 1991;28A:1720-1727; Key TJA, Chen J, Wang DY, Pike MC, Boreham J. Sex hormones in women in rural China and in Britain. Brit. J. Cancer 1990;62:631-636.)

Liver cancer (Campbell TC, Chen J, Liu C, Li J, Parpia B. Non-association of aflatoxin with primary liver cancer in a cross-sectional ecologic survey in the People's Republic of China. Cancer Res. 1990;50:6882-6893; .Youngman LD, Campbell TC. Inhibition of aflatoxin B1-induced gamma-glutamyl transpeptidase positive (GGT+) hepatic preneoplastic foci and tumors by low protein diets: evidence that altered GGT+ foci indicate neoplastic potential. Carcinogenesis 1992;13:1607-1613).

Energy utilization (Horio F, Youngman LD, Bell RC, Campbell TC. Thermogenesis, low-protein diets, and decreased development of AFB1-induced preneoplastic foci in rat liver. Nutr. Cancer 1991;16:31-41:Campbell TC. Energy balance: interpretation of data from rural China. Toxicological Sciences 1999;52:87-94).

Colon cancer (Campbell, T.C., Wang G., Chen J., Robertson, J., Chao, Z. and Parpia, B. Dietary fiber intake and colon cancer mortality in The People's Republic of China. In: Dietary Fiber, Chemistry Physiology and Health Effects, (Ed. Kritchevsky, D., Bonfield, C., Anderson, W.), Plenum Press, New York, 473-480, 1990).

Affluent-Poverty Diseases (Campbell TC, Chen J, Brun T, et al. China: from diseases of poverty to diseases of affluence. Policy implications of the epidemiological transition. Ecol. Food Nutr. 1992;27:133-144).

Protein-growth rate (Campbell TC, Chen J. Diet and chronic degenerative diseases: a summary of results from an ecologic study in rural China. In: Temple NJ, Burkitt DP, eds. Western diseases: their dietary prevention and reversibility. Totowa, NJ: Humana Press, 1994:67-118; Campbell TC, Junshi C. Diet and chronic degenerative diseases"perspectives from China. Am. J. Clin. Nutr. 1994;59:1153S-1161S).
  #14  
Old 04-13-2015, 11:38 PM
jimbo2012's Avatar
jimbo2012 jimbo2012 is offline
Sage
Join Date: Mar 2012
Location: LI, NY >Fernandina South
Posts: 7,255
Thanks: 93
Thanked 176 Times in 101 Posts
Default

As I previously said, one of my interests in the China database was simply to see if there was evidence supporting the health benefits of a plant-based diet for these various models (and many more). The fact that we observed a slew of statistically significant results supporting this proposition, especially for a dietary experience having such low total fat and animal based foods, was quite remarkable. Did every correlation among our 100,000 show the expected? This was my comment, verbatim, already published in our book (that Denise did not acknowledge in her critique):
"Do I think the China Study findings constitute absolute scientific proof? Of course not. Does it provide enough information to inform some practical decision-making? Absolutely. An impressive and informative web of information was emerging from this study. But does every potential strand (or association) in this mammoth study fit perfectly into this web of information? No. Although most statistically significant strands readily fit into the web, there were a few surprises. Most, but not all, have since been explained."
In summary, Denise's critique lacks a sense of proportionality. She gives (with considerable hyperbole, at times) the analyses of the China data more weight than they deserve by ignoring the remaining evidence discussed in the other 17 chapters in the book. The China research project was a cornerstone study, yes, but it was NOT the sole determinant of my views (as I have repeated, almost ad nauseum in my lectures). In doing so, and except for a few denigrating remarks on our experimental animal research, she also ignores the remaining findings that I presented in our book. She seems not to understand what our laboratory research was showing. Using univariate correlations mostly without adjustment for confounding factors, qualification of variable authenticity, and/or biological plausibility can lead to haphazard evidence, subject to the whims of personal bias. Also, univariate correlations of this type can lead to too much emphasis on individual nutrients and foods as potential causes of events.
Also, as I already mentioned, she questions our omission of the Tuoli County data as if this was some sort of sleight of hand on my part (in addition to my comments above, I already explained this omission in one of my papers and on my preliminary blog). She over-interprets our very limited 'dairy' data which only includes 3 counties (of 65) that use a very different product from what we consider to be dairy. And she continues to characterize my views in reference to veganism and vegetarianism (I don't even use these words) as if I were motivated by an ideology instead of by my consideration of empirical data and biological plausibility.
Not only does Denise misrepresent and misunderstand the rationale for the science in The China Study, her choice of words do not facilitate what she hopes to achieve. Her overall message, often embellished with adjectives and subjective remarks, appeals to some questionable characters sympathetic to or subservient to the Weston A Price Foundation, a farm lobbying group whose advocates and apologists have accused me of being a "fraud", a "liar", a "buffoon" and (earlier) an associate of a "terrorist" organization. I doubt that this is what she wanted to achieve. These individuals, for much too long, have been carelessly using or even ignoring science to further their own interests, such as advocating for the use of a very high fat, high protein diet mostly consistent with the diet that has caused us so much difficulty.

Just the facts
  #15  
Old 04-14-2015, 04:37 PM
lanemb lanemb is offline
Member
Join Date: Dec 2014
Location: Lake Deaton
Posts: 39
Thanks: 0
Thanked 0 Times in 0 Posts
Default

Overall my approach is moderate. It is easier for me to eliminate red meat than to try and eat it in moderation. To this day I am amazed at the dramatic reduction it gave me. A coworker and his wife tried it and had good results but not as good as I had. I don't think there is one fix that fits all.
Closed Thread


You are viewing a new design of the TOTV site. Click here to revert to the old version.

All times are GMT -5. The time now is 03:13 AM.